Problem Statement
Prove that:
![Rendered by QuickLaTeX.com \[\frac{(\cos \theta + i \sin \theta)^4}{(\sin \theta + i \cos \theta)^4} = \cos 8\theta + i \sin 8\theta\]](https://csvtu.org.in/wp-content/ql-cache/quicklatex.com-56157e63823c12f3624de22c8e60bdec_l3.png)
Solution
Let LHS be:
![Rendered by QuickLaTeX.com \[\frac{(\cos \theta + i \sin \theta)^4}{(\sin \theta + i \cos \theta)^4}\]](https://csvtu.org.in/wp-content/ql-cache/quicklatex.com-e9b99ce0c61c52dc917f8adb01cb2750_l3.png)
We have:
![]()
![]()
Expanding:
![]()
Using identities:
![]()
Thus:
![]()
Rewriting the values:
![Rendered by QuickLaTeX.com \[\frac{(\cos \theta + i \sin \theta)^4}{(\sin \theta + i \cos \theta)^4} = \frac{\cos 4\theta + i \sin 4\theta}{\cos 4\theta - i \sin 4\theta}\]](https://csvtu.org.in/wp-content/ql-cache/quicklatex.com-e165545e04887a71ab0e6d6f9a8fc515_l3.png)
By rationalization:
![Rendered by QuickLaTeX.com \[& = \frac{(\cos 4\theta + i \sin 4\theta)(\cos 4\theta + i \sin 4\theta)}{\cos^2(4\theta) + \sin^2(4\theta)}\]](https://csvtu.org.in/wp-content/ql-cache/quicklatex.com-156546c52a97792f0ea73e922c5e333f_l3.png)
Using
:
![]()
Conclusion
Therefore, the proof is complete:
![Rendered by QuickLaTeX.com \[\frac{(\cos \theta + i \sin \theta)^4}{(\sin \theta + i \cos \theta)^4} = \cos 8\theta + i \sin 8\theta\]](https://csvtu.org.in/wp-content/ql-cache/quicklatex.com-56157e63823c12f3624de22c8e60bdec_l3.png)
Hi, this is a comment.
To get started with moderating, editing, and deleting comments, please visit the Comments screen in the dashboard.
Commenter avatars come from Gravatar.